Dr. Christopher Rhodes
Professor
Contact Information Office: CHEM 330 Phone: (512) 245-6721 Fax: (512) 245-2374 email: cprhodes@txstate.edu |
Educational Background
|
Honors and Awards
|
|
Areas of Interest
|
|
Related Web Sites |
Research in the Rhodes Group
Research in the Rhodes group is aimed at studying the unique structure and properties of nanomaterials using a variety of materials characterization, electrochemical, and spectroscopic methods. Nanomaterials provide the ability to control surface structure and reactivity, which are amplified in nanoparticles, nanotubes, and nanosheets. Nanomaterials possess atomic and electronic structures which are influenced by their composition, surface structure, internal structure, particle size, interparticle interactions, and adsorbed solution-phase species. Surfaces are significantly amplified for nanomaterials, and the surface structure can markedly differ from that of the bulk structure. As a result of their unique structures, nanomaterials possess distinct electrochemical, electrical, optical, and catalytic properties. The ability to control the structure and properties of nanomaterials provides a pathway to develop improved materials for electrochemical devices such as batteries, supercapacitors, fuel cells, water electrolyzers, and sensors as well as other applications.
Selected Publications
Niu, S.; McFeron, R.; Godínez-Salomón, F.; Chapman, B.S.; Damin, C.A.; Tracy, J.B.; Augustyn, V.; Rhodes, C.P. Enhanced Electrochemical Lithium-Ion Charge Storage of Iron Oxide Nanosheets, Chemistry of Materials, 2017, 9, 7794–7807. DOI: 10.1021/acs.chemmater.7b02315
Perera, S.D.; Archer, R.; Damin, C.A.; Mendoza-Cruz, R.; Rhodes, C.P. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage, Journal of Power Sources, 2017, 343, 580-591. DOI:10.1016/j.jpowsour.2017.01.052
Godínez-Salomón, F.; Mendoza-Cruz, R; Arellano-Jimenez, M.J., Jose-Yacaman, M.; Rhodes, C.P; Metallic Two-dimensional Nanoframes: Design of Carbon-free Hierarchical Nickel-Platinum Alloy Electrocatalyst Nanoarchitecture with Enhanced Oxygen Reduction Activity and Stability, ACS Applied Materials & Interfaces, 2017, 9, 18660-18674. DOI: 10.1021/acsami.7b00043
Duraia, E.M.; Niu, S.; Beall, G.W.; Rhodes, C.P., Humic Acid-Derived Graphene-SnO2 Nanocomposites for High Capacity Lithium-Ion Battery Anodes, Journal of Materials Science: Materials in Electronics, 2018, 29, 8456–8464. DOI: 10.1007/s10854-018-8858-x
Godínez-Salomón, F.; Rhodes, C.P; Alcantara, K.S.; Zhu, Q.; Canton, S.E.; Calderon, H.A.; Reyes-Rodríguez, J.L.; Leyva, M.A.; Solorza-Feria, O., Tuning the Oxygen Reduction Activity and Stability of Ni(OH)2@Pt/C Catalysts through Controlling Pt Surface Composition, Strain, and Electronic Structure, Electrochimica Acta, 2017, 247, 958-969. DOI: 10.1016/j.electacta.2017.06.073
Stein, M.; Chen, C.; Mullings, M.; Jamie, D.J.; Zaleski, A.; Mukherjee, P.; Rhodes, C.P. Probing the Effect of High Energy Ball Milling on the Structure and Properties of LiNi1/3Mn1/3Co1/3O2 Cathodes, Journal of Electrochemical Energy Conversion and Storage, 2016, 13, 031001. DOI:10.1115/1.4034755